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INTRODUCTION

The clinical care and rehabilitation approaches 
involving patients diagnosed with disorders of 
consciousness (DOC) are of great medical and 
social importance. The progressive increase in 
the number of surviving patients and their in-
creasing life expectancies, in all industrialized 
countries, reflects the advancement of knowledge 
and techniques in the field of reanimation, as well 
as improved quality of care. An accurate early 
diagnosis is indispensable to develop early and 
effective standards of care, appropriate to an indi-
vidual patient’s condition. The clinical diagnosis 
of these patients is a major challenge because of 
the very fine line between the Vegetative State/
Unresponsive Wakefulness Syndrome (VS/UWS; 
Laureys et al., 2010), characterized by preserved 
arousal in the absence of behavioral signs of 
awareness, the Minimally Conscious State (MCS), 

with non-reflexive albeit inconstant purposeful 
behaviors, and the Locked-In Syndrome (LIS), in 
which consciousness is fully preserved (Giacino 
et al., 2002). Recent work identified two groups 
within this patient population - those who show 
higher-order signs of consciousness (e.g., com-
mand following, intelligible verbalization, and 
non functional communication; i.e. MCS plus) 
versus those who show only low-level signs of 
consciousness (e.g., visual pursuit of a salient 
stimulus, noxious stimulation localization, ap-
propriate emotional response; i.e. MCS minus) 
(Bruno et al., 2011; Bodart et al., 2013).

Despite the efforts already made to improve 
the instrumental diagnosis, differential diagnosis 
between different patients with an altered state 
of consciousness is eminently clinical and based 
on a list of items that the patient is unable to 
perform. The LIS is a term introduced by Plum 
and Posner to describe a neurological condition 
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of quadriplegia and anarthria associated with ven-
tral pons infarction (Plum & Posner, 1966). The 
American Congress of Rehabilitation Medicine 
defined the LIS as: i) the presence of sustained 
eye opening, ii) the preservation of cognitive 
skills, iii) a severe hoarseness or hypophonia iv) 
quadriplegia or quadriparesis, and v) a primary 
mode of communication using eye movements or 
blinking (American Congress of Rehabilitation 
Medicine, 1995). The main etiology of LIS is 
stroke (Patterson & Grabois, 1986). The diagno-
sis of this condition is particularly challenging 
because patients cannot communicate by the 
usual means. These patients are fully conscious 
but completely or almost completely unable to 
move and speak, so they can easily be mistaken 
for VS patients.

Evidence-based medicine (EBM) has been 
defined as the integration of current best evidence 
with clinical experience and patients’ values and 
preferences in clinical decision-making process 
(Brownson et al., 2012). With the introduction of 
EBM, the clinicians are exhorted to consider all 
three factors in the process to foster the evidence-
based-decision-making (EBDM) in public health. 
These concepts appear of utmost relevance when 
dealing with disorders of consciousness character-
izations, which entail a broad spectrum of entities 
that are often misdiagnosed.

In this context, the development of brain-
computer interface (BCI) tools, as well as other 
paraclinical instruments and methods, can fa-
cilitate the differentiation of these clinical states. 
BCIs are devices that allow users to communicate 
directly by means of brain activity. Recently, BCIs 
have become much more practical and flexible, 
due to advances such as dry electrodes, high-im-
pedance amplifiers, better interfaces (Kaufmann 
et al., 2013a), and improved testing with patients 
in clinical settings (Zickler et al., 2011). Hence, 
BCIs are becoming useful to broader groups 
(Guger et al., 2012; Wolpaw and Wolpaw, 2012; 
Allison et al., 2013).

The main objective of this chapter is to show 
how BCI technology is becoming useful to DOC 
patients. The two main functions are for communi-
cation, which has been well established for BCIs, 
and detection of consciousness, which is relatively 
unexplored. We will first review background 
material showing that conventional methods need 
improvement, and then introduce EEG methods. 
This sets the stage to present new research studies 
through the European Commission (EC) research 
project DECODER (www.decoderproject.eu), 
using EEG, fMRI and fNIRS to show that BCI 
technology can supplement conventional methods.

BACKGROUND

Forty-three percent of patients diagnosed as be-
ing in the VS are reclassified as (at least) mini-
mally conscious when assessed by expert teams 
(Schnakers et al., 2009). Other DOC patients might 
appear non-communicative through standard clini-
cal testing, but could be able to communicate with 
newer methods. Furthermore, some DOC patients 
have transient periods of relative wakefulness, but 
remain unaware of their surroundings. The Euro-
pean project DECODER (see Figure 1) aimed at 
using BCI technology to identify DOC patients 
who might be able to communicate through newer, 
BCI based technologies.

One recent study showed that patients identi-
fied as being in a vegetative state VS were not 
only consciously aware, but could answer yes 
or no questions (Monti et al., 2010). This work 
demonstrates that some patients meet all behav-
ioural criteria for VS, but nevertheless have covert 
awareness. Some research to assess cognitive ac-
tivity in DOC patients relies on fMRI. Functional 
MRI can be very powerful but also entails major 
limitations, as discussed in the next section.

http://www.decoderproject.eu
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Functional MRI to Assess Conscious 
Awareness and Communicate 
with Patients with DOC

Overview

Although EEG-based systems are portable, and 
far less expensive than fMRI, fMRI has also 
been used successfully to develop a BCI system 
for patients with disorders of consciousness 
(DOC). Functional MRI measures the changes 
in blood oxygenation level of the brain, known 
as haemodynamics (Ogawa et al., 1993; Kwong 
et al., 1992). fMRI has several strengths for BCI 
applications, including its non-invasive nature, 
brain coverage and excellent spatial resolution 
(in the millimeter range).

Owen and colleagues (2006) employed an 
fMRI-based mental imagery paradigm to assess 
command-following in a patient who had been 
diagnosed behaviourally as in the VS, and had 

been unresponsive for five months. The patient was 
asked to imagine playing tennis (for 30 seconds) 
when she heard the word “tennis”, and to relax 
(for 30 seconds) when she heard the word “relax.” 
In a separate spatial imagery task, she was asked 
to imagine moving around the rooms of her home 
(for 30 seconds) when she heard the word “house”, 
and to relax (for 30 seconds) when she heard the 
word “relax”. The patient showed task-specific 
functional activation in the expected regions of 
the supplementary motor area (SMA) following 
the instruction to imagine playing tennis, and in 
the parahippocampal gyrus (PPA), the posterior 
parietal lobe (PPC), and the lateral premotor cortex 
(PMC) following the instruction to imagine mov-
ing from room to room in her house. Moreover, 
this activity was indistinguishable from that of 
healthy participants performing the same tasks 
(Boly et al., 2007; Owen et al., 2006).The patient’s 
functional activation was statistically robust, re-
producible, task-appropriate, and sustained over 

Figure 1. A graphical depiction of how the DECODER project could facilitate DOC assessment
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long time-intervals (30 seconds), allowing Owen 
and colleagues (2006) to conclude that she was 
responding to the commands by performing the 
imagery tasks in the absence of any overt action, 
and thus, that she was falsely diagnosed as being 
in the VS, albeit correct according to behavioural 
measures.

Using fMRI to Achieve Binary 
Communication with DOC Patients

Monti et al. (2010) extended this approach to 
demonstrate that fMRI could also be used to 
communicate with a behaviourally non-responsive 

patient who was assumed to be in the VS. One 
type of imagery (tennis or spatial navigation) was 
mapped to a “yes” response, and the other to a “no” 
response. A single neutral word “answer” was used 
to cue each response to a question. To decode the 
answers, each communication scan was compared 
to two ‘localizer’ scans, during which the patient 
was asked to simply imagine playing tennis or 
imagine moving around his house (see Owen et 
al., 2006). Following five autobiographical ques-
tions (e.g., “Is your father’s name Thomas?”), the 
answers that were decoded from the brain activity 
matched the factually correct answers, which were 
unknown to the experimenters at the time (Figure 

Figure 2. The top panel (1 - 2) shows the patient’s brain activation when he is imagining playing ten-
nis (left), and when he is imagining walking around his house (right). The patient’s brain activity was 
indistinguishable from that of the healthy controls performing the same tasks. The bottom panel (3 - 4) 
shows the patient’s brain activity when he was instructed to use these mental imagery tasks to convey 
either the word ‘yes’ or ‘no’, in response to being asked binary (‘yes’/‘no’) questions. The patient’s 
brain activation could unequivocally decode the answers to several autobiographical questions. The 
responses derived from the patient’s brain activity were subsequently corroborated as factually correct 
by the patient’s family.
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2). This study demonstrated that the presence of 
voluntary, reliable, and sustained brain activity in 
response to a command could be used as a proxy for 
physical behaviour, such as movement or speech, 
to facilitate communication with non-responsive 
participants (Owen and Coleman, 2008).

In the study described above, 54 VS and MCS 
patients were tested and, of those, only five (four 
VS) showed significant changes in fMRI activation 
during the basic imagery tasks. One interpretation 
of this finding is that the diagnosis was accurate 
in the vast majority of cases, and the negative 
results reflect a genuine lack of awareness in those 
patients. Several other factors, however, may also 
explain these findings. First, this technique might 
lack sensitivity, and thus failed to show activation 
in patients who might have been engaged in the 
task (Bardin et al., 2011). Indeed, it is known 
that in brain-damaged patients, the coupling of 
haemodynamics and neuronal firing, which lies 
at the basis of the fMRI signal, may be very dif-
ferent from that in healthy volunteers (Rossini 
et al., 2004; Gsell et al., 2000). Alternatively, 
it is possible that, in some patients, deficits in 
language comprehension, decision-making, 
working memory or executive function may have 
hampered their efforts to express themselves 
through the imagery task, yielding brain activity 
too weak to be interpreted. Consistent with this 
possibility, a recent report found an MCS patient 
who showed no distinguishable activation in the 
mental imagery task, but, nonetheless, was able 
to voluntarily modulate his brain activity by al-
locating visual attention in response to verbal 
commands (Monti et al., 2013). Finally, in some 
patients, functional re-organization of the brain 
following the injury may have produced highly 
atypical patterns of fMRI activation, which may 
be impossible to interpret.

Discussion and Future Directions

Multi voxel pattern analysis (MVPA), an fMRI 
analysis technique that is highly sensitive to the in-
formation content in the neural signal, may provide 
a solution to some of these issues. Traditional uni-
variate fMRI analyses average across activations 
in a brain region, and compare overall changes in 
signal strength between different types of condi-
tions (Friston et al., 1995). MVPA, on the other 
hand, does not discard the information relating to 
the patterns of activity within that brain region. 
As such, it is capable of dissociating overlapping 
neural patterns to different stimuli or mental state 
(deCharms, 2007; 2008), which could not be 
disentangled with univariate methods (Haynes 
and Rees, 2006). By dissociating several mental 
states or responses elicited by a single command 
(Chadwick et al., 2010; Kay et al., 2008), MVPA 
also has the potential to expand communication 
from binary responses to multiple-choice answers. 
For example, while further in the future, MVPA 
could lead to tools that can help ask patients to 
express how much pain they feel on a sliding scale 
from 1-10 by imagining the appropriate number.

MVPA methods can also be applied in real-
time (Caria et al., 2012; Sitaram et al., 2011; Lee 
et al., 2009; LaConte et al., 2007), and present 
exciting possibilities for communication without 
any perceptible delay between the question and the 
interpretation of the response. With these meth-
ods, however, classification accuracy is strongly 
dependent on the amount of available fMRI data. 
This may be a problem for VS patients, where 
the scanning time is often limited due to physical 
reasons. For example, patients may experience 
difficulty lying supine for long periods of time. 
Moreover, VS patients may become exhausted 
easily and are very likely to exhibit a very short 
attention span.

In summary, fMRI has great strengths for BCI 
applications, including its non-invasive nature, 
global brain coverage, and excellent spatial resolu-
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tion of specific brain structures, However, fMRI 
also comes with significant limitations, which 
restrict its widespread use in DOC patients. In 
particular, its high cost, lack of portability, and 
physical impositions on some patients (e.g. patients 
must not wear paramagnetic equipment, refrain 
from any minor movement, and be able to cope 
with the loud noise of the fMRI scanner), render 
this technology unlikely to provide the ultimate 
communication solution that DOC patients require 
in real life situations. Electroencephalography 
and fNIRS are not susceptible to such caveats, 
and provide exciting opportunities to promote 
and further develop the insight gained with fMRI.

Conventional EEG Methods

Unlike fMRI, EEG is easy to set up, portable, 
widely available and inexpensive. EEG is one of 
the most important neurophysiological methods 
to assess cognitive functions (e.g., attention, 
language, etc.) in humans. These features make it 
practical for bedside testing. EEG also can measure 
brain activity with excellent temporal resolution. 
One common method of analyzing EEG data is 
to extract event-related potentials (ERPs) from 
the recorded EEG. An ERP is a specific brain 
pattern that is time-locked to a specific event, 
such as a flash, tone, or movement (Luck, 2005). 
In general, ERPs reflect the synchronous activity 
of postsynaptic potentials produced by the paral-
lel firing of cortical pyramidal neurons during 
information processing (Peterson et al., 1995). In 
healthy participants, those reactions are elicited 
reliably and are well-studied. Based on this, they 
can also serve as important indicators of cognitive 
function in severely disabled patients with DOC 
(Kotchoubey et al., 2005, D’Arcy et al., 2011).

EEG can indeed be useful for assessing cog-
nitive state and for communication. One recent 

study found that 3 of 16 patients (19%), who 
were classified as VS and totally unresponsive 
behaviourally, could consistently produce specific 
EEG patterns to two different commands (Cruse et 
al., 2011). These results show that EEG methods 
could help identify VS patients who might be 
able to communicate with an EEG-based BCI. 
However, developing practical and reliable tools 
in field settings entails many challenges such as 
patients’ low attention span, demanding set-up, 
and electrically noisy environments.

The Hierarchical Approach and 
Relevant ERP Components

The hierarchical approach is regarded as the most 
effective way to examine cognitive functioning in 
DOC patients (Kotchoubey et al., 2005; Kübler and 
Kotchoubey, 2007; Owen et al., 2005). Figure 3 
depicts the interplay of the three suggested levels 
of the hierarchical approach investigating differ-
ent cognitive functions underlying consciousness. 
Different EEG paradigms, each of which elicits 
specific ERP components, are associated with 
each of the levels.

The first level includes the assessment of ba-
sic cognitive functions. These functions may be 
completely unconscious, but this level is critical 
before moving to the next level. Within the first 
level, paradigms test the patient’s sensory and auto-
matic cognitive information processing capacities, 
which are reflected in the ERP components P1/
N1 (sensory input) and the mismatch negativity 
(MMN). Typically, the MMN is elicited by a rare 
stimulus, called deviant, that differs from the 
frequently-occurring stimuli, called standards, in 
one or more physical parameters such as duration, 
intensity, frequency or location (oddball paradigm; 
Näätänen et al., 2004; Schröger and Wolff, 1996; 
Jacobsen and Schröger, 2003). The MMN is in-
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terpreted as an index of a mismatch between the 
actual stimulus and the memory trace of physical 
or abstract environmental regularities. Thus, it 
appears in response to a violation of simple rules 
or expectations (for review, see Näätänen et al., 
2007). The important characteristic of this viola-
tion detection is the high level of automaticity. 
MMN paradigms can be used successfully in non-
and low-responsive patients (Kane et al., 2000; 
Guérit, 2005) because MMNs do not depend on 
the actual cognitive state of a patient (e.g., fatigue, 
monotony) and the daily fluctuations of arousal 
(Kotchoubey et al., 2003). Therefore, the MMN 
is a good predictor toward a positive or negative 
outcome of comatose patients (e.g., Fischer et al., 
1999, see also meta-analysis by Daltrozzo et al., 

2007) as well as for the improvement of VS patients 
(Kotchoubey et al. 2005; Wijnen et al., 2007).

The second level can reveal deeper information 
processing that indicates, though does not prove, 
conscious intentional states. One way to test this 
level is to assess language related processes, 
reflected in the N400 ERP component (e.g., 
Kutas & Hillyard, 1980). The N400 is strongly 
correlated with semantic manipulation (Hagoort, 
2005; Kutas & Federmeier, 2011; Sitnikova et 
al., 2002) and is distributed over centro-parietal 
areas. The semantic manipulation can be achieved 
on the word level by presenting word pairs which 
are related (mountain-valley) or unrelated to each 
other (place-bravery; Hagoort et al. 1996) and on 
the sentence level by presenting sentences with 

Figure 3. Hierarchical approach with three different levels of cognitive processing and their respective 
EEG/ERP indicators
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correct word endings (“The eel is aquatic.”) and 
incorrect word endings (“The eel is a bird.”; 
Connolly et al. 1992). Thus, a more pronounced 
N400 component for unrelated/incorrect condi-
tions compared to the related/correct conditions 
indicates the ability of low- and non-responsive 
patients to process complex language information 
(Kotchoubey et al., 2002). Recently, research also 
showed that correctly and falsely negated sentences 
(birds cannot speak vs. birds cannot fly) elicit 
an N400 of a different amplitude (Herbert and 
Kübler, 2011). As negation requires cognitive as 
opposed to automatic processing, this paradigm 
may be regarded as transitory between the second 
and the final level.

Finally, the third level includes higher cogni-
tive functions (e.g., selective attention, instruction 
understanding). Only this level can reveal strong 
indication of conscious awareness. One ERP 
component important for this and the previously 
described second level is the P3 (or P3b). The P3, 
like the MMN, is often investigated in the context 
of the oddball paradigm (Duncan-Johnson & Don-
chin, 1977). The P3 can be elicited without an ac-
tive instruction, especially to stimuli of particular 
significance, like a subject’s own name (Fischler 
et al., 1987, Kotchoubey et al., 2005). However, 
the P3 increases substantially when subjects are 
instructed, for example, to count a rare stimulus 
in a sequence containing frequent and rare stimuli 
(Lang et al., 1997). Thus, passive P3 paradigms 
indicate the level two in the hierarchical approach, 
whereas active P3 paradigms reflect the third level. 
These paradigms may serve as a battery for the 
assessment of the level of consciousness (BAC). 
The following section presents recent research 
that shows the usage of this hierarchical approach.

CHALLENGES AND ISSUES 
WITH EEG-BASED METHODS

The previous section demonstrated that, despite 
substantial research and development, conven-
tional tools for assessing DOC are inadequate. 
This section discusses dominant issues, methods 
and paradigms in EEG-based assessment of con-
sciousness. We discuss some limitations of current 
methods based on interviews and empirical work. 
Next, we address problems with conventional 
analysis methods with single subjects and single 
trials.

Requirements for an EEG-
Based Diagnostic Battery 
for Patients with DOC

Above in this chapter, the major problem of mis-
diagnosis in DOC patients was largely discussed 
from the point of view of neuroscience and the 
results of neuroimaging research. However, the 
perspective of practicing clinicians is also of 
importance. We performed a study to assess 
clinicians’ views regarding current diagnostic 
procedures and possible improvements. In the 
past years, studies have repeatedly indicated a 
high proportion of misdiagnoses in patients in 
minimal conscious (MCS) and vegetative state 
(VS) (Schnakers et al., 2009). Thus, diagnosis 
in such low or non-responsive states needs to be 
improved, and ongoing research aims at devel-
oping diagnostic means based on imaging and 
electrophysiological techniques. Event-related 
potentials (ERP) have been shown to be a suitable 
tool to complement clinical assessment and to 
detect residual cognitive functions (Kotchoubey 
at al., 2002). However, such tools have to meet 
the requirements of physicians in the field and 
must be developed in close collaboration with 
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these practitioners, who are the target user group 
for such an EEG or imaging based diagnostic 
battery. Following a user-centered approach in 
which a product is developed in an iterative process 
between users and developers (e.g., Zickler et al., 
2011; Holz et al., 2012; Kübler et al., 2013), nine 
semi-structured interviews were conducted with 
representatives from acute care clinics (ACC, 4) 
and neurological rehabilitation centers (NRC, 5) 
across Germany.

Interviewees were five medical directors, 
two chief physicians and two senior physicians. 
They were told about the development of a new 
EEG-based diagnostic battery based on auditory 
ERPs. The interviews covered three main topics: 
current diagnostic procedures, weaknesses of the 
current process and expectations concerning a new 
diagnostic battery. All interviews were recorded 
and transcribed. Answers to each question were 
grouped into clusters and counted (Erlbeck & 
Kübler, 2013).

In general, results supported the hypotheses 
that clinicians agree that current procedures need 
improvement. For clarity, answers of ACCs and 
NRCs will be presented together unless otherwise 
noted.

Current Procedures

A diagnosis in ACCs is made rather quickly 
within few hours. NRCs acknowledge the diag-
nosis provided by the referring ACC but review 
it on admission of the patient. A diagnosis is 
regularly checked on an hourly (ACCs), daily 
or weekly (NRCs) basis depending on the status 
and medical history of the patient. When mak-
ing a diagnosis, physicians primarily rely on the 
clinical assessment, meaning the observation of 
reactions to auditory, sensory and visual stimuli. 
All institutions apply EEG, especially in comatose, 
VS and MCS patients. One institution (NRC) 
also utilizes measurements of evoked potentials. 
In some cases, CT (n=6) or fMRI (n=4) are also 
used. The Glasgow Coma Scale is administered 

in six, the Barthel Index in five and the Coma 
Recovery Scale revised (CRS-r) in two institutions. 
Seven institutions consider their diagnosis to be 
of primary importance for treatment decisions 
and future therapeutic processes. Two institutions 
(NRC) consider the diagnosis to be important but 
put a greater focus on prognosis and treatment.

Weaknesses in the 
Current Procedures

Results in the current diagnostic process partially 
depend on experience and observational skills of 
the responsible physician (n=5). Therefore, there 
is interest in a stronger focus on different aspects 
of diagnostics in the education of becoming a 
neurologist (n=3). Another critical issue is the lack 
of methods to estimate the further development 
of patients in terms of regaining consciousness 
or rehabilitative progress (n=3). Furthermore, 
a lack of sufficient resources to apply imaging 
techniques was mentioned (n=3). Finally, the 
consideration for psychological matters and cog-
nitive performance (as the entity that makes us 
humans) is considered insufficient in neurological 
diagnostics (n=2).

Requirements and Expectations

A general interest in applying a new, more reliable 
diagnostic tool was evident in many institutions 
(one ACC, five NRCs). Three representatives 
from ACCs could not imagine using it in their 
institutions but consider it interesting, particu-
larly for therapeutic institutions such as NRCs. 
All interviewees named reliability and validity 
as mandatory. Additionally, the tool must not 
be affected by disturbances typical in a medical 
environment (n=6) and must be practical in terms 
of time, personnel, financing and the setup (n=7). 
Respondents also mentioned that the amount of 
resources available to invest will largely depend 
on the benefit of the resulting output (n=4). Tak-
ing into account the weaknesses of the current 
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diagnostics, the most relevant expectations are 
the prognostic value of the results (n=7) and a 
support in therapeutic decision-making (n=5). 
Thus, the output is expected to be accurate in 
terms of a selective differentiation between vari-
ous diagnoses and prognoses.

Overall, a correct diagnosis is vital for mini-
mally or non-responsive patients, not only because 
prospects for MCS patients are more favorable 
than for VS patients but also to ensure that con-
sciousness in a non-responsive patient is detected 
(Healy, 2010). The results reveal that physicians 
are aware of weaknesses in the current diagnosis 
process and want a new diagnostic EEG-based tool. 
It must be highly valid, work reliably, allow for 
prognostic statements and not add to the burden 
of limited financial and personnel resources. The 
necessity of such an EEG-based tool to improve 
reliability of the diagnosis is widely acknowledged 
as current clinical assessment is influenced by 
individual skills of the physician.

To conclude, a practical, reliable and valid 
EEG-based diagnostic tool would be highly wel-
come in clinical and rehabilitative routines. Thus, 
the ERP-based paradigms to delineate the level 
of consciousness and cognitive function in other-
wise non-responsive patients need to be validated 
such that only the most reliable and informative 
are applied when time is limited. The decision 
of which paradigm works best for which level of 
consciousness or cognition requires normative 
studies with representative healthy samples. The 
prognostic value of such paradigms can only be 
determined in longitudinal studies. A preliminary 
study with the BAC in a small sample of patients 
is described in the next section.

Tests on Patients with DOC 
and Locked-In Syndrome

The ERP paradigms proposed above were tested 
on a group of DOC and LIS patients. One reason 
to study LIS patients is to establish patterns of 
evoked potentials within BCI paradigms in brain 

injured patients who do not exhibit disorders of 
consciousness but are behaviourally quite similar 
to non-responsive patients.

Methods

Here we describe and compare the results of 6 DOC 
patients in acute and chronic stages, recruited in 
the Post-Coma Unit of the Neuro-Rehabilitation 
Hospital “Fondazione Santa Lucia” in Rome, 
and of 9 chronic LIS patients (> 1 year in LIS, 
6 female, 3 male, mean age 40 ± 9 years) from 
the French Association for Locked-in syndrome 
(ALIS) tested with MMN, and the passive and 
active P3 of the BAC developed within the DE-
CODER project. Diagnosis of VS (n = 3) and 
MCS (n = 3) was based on the CRS-r. EEG was 
recorded with an active 32-electrode cap with two 
biosignal amplifiers g.USBamp (g.tec medical 
engineering GmbH, Austria) and recordings were 
processed and analysed with the NPXlab2012 
software (www.brainterface.com). Data were pre-
processed with Independent Component Analysis 
(ICA). Independent components corresponding to 
ocular artifacts were removed and other artifacts 
were removed by means of a threshold criterion 
(i.e. signal segments exceeding 70µV in absolute 
value). Components of interest were analyzed by 
visual inspection and by running a t-test. Differ-
ences were considered statistically significant for 
p<0.05 if they appeared simultaneously at least 
on two electrodes and they lasted a minimum of 
50 consecutive milliseconds.

Results

With regards to DOC patients, the Mismatch 
Negativity (MMN) was observed in three of six 
patients and the P300 was present in all but one 
patient in both the active and the passive condi-
tions (Table 1). In one LIS patient, tests were 
stopped due to fatigue. Data from two patients (3 
and 7) were discarded due to excessive artefacts. 
In the six remaining LIS patients, four presented 

http://www.brainterface.com
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an active P3; three a passive P3; and none had an 
MMN (Table 1).

Discussion

The auditory P300 and the MMN can offer a 
valuable supplement to early routine clinical ex-
amination and prediction of neurological outcome 
of post-comatose patients. From the data collected 
in this small patient sample, it seems that the pres-
ence of the considered components is not related 
to the severity of the disorder of consciousness, 
but rather to the different states of the brain, in 
terms of site and extent of the lesions. The MMN 
component points to a sufficiently spared pre-
attentive sensory memory system (Näätänen et al., 
2007), while the presence of the P3 suggests that 
working memory updating (Coles et al., 1988) is 
functioning in most of these patients.

Results in LIS patients revealed a response to 
the higher cognitive function paradigm (the ac-
tive P300 task) even in the absence of the MMN 
and P300 in the passive condition. Regarding the 
MMN, a reduction of this ERP component has 

been described in patients with cognitive deficits 
(Duncan et al., 2009). In LIS patients, a study 
has shown a moderate and selective cognitive 
impairment that is not related to the location of 
the lesion (Rousseaux et al., 2009). However, this 
does not explain the absence of an MMN in LIS 
patients. In this patient sample, the absence of 
lower level components (see Figure 3) and even 
the passive P300 did not indicate the absence of 
higher level components (active P300). This has 
important implications for the diagnosis of altered 
states of consciousness, confirming previous work 
(Kotchoubey et al., 2005) that this hierarchical 
approach is flawed.

The Hierarchical Approach 
in Clinical Assessment

Another concern with the hierarchical approach 
involves its use within the daily clinical routine. 
For example, is it appropriate to stop assessing 
patients after one or two paradigms (correspond-
ing to the first and second level) that do not yield 
promising ERP findings? Figure 4, like the preced-

Table 1. Results from the 6 DOC and the 6 LIS patients analyzed. (+) = presence of ERP component;(-) 
= absence of clearly recognizable ERP components. 

MMN P300 Passive P300 Active

MCS 1 + + +

VS 2 + + +

MCS 3 - + -

MCS 4 - + +

VS 5 - + -

VS 6 + - +

LIS 1 - - +

LIS 2 - - +

LIS 4 - + +

LIS 6 - + +

LIS 8 - + -

LIS 9 - - -
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ing section, indicates that stopping assessment so 
early is not justified by the data. This minimally 
consciousness state (MCS) patient (male, 35 
years, coma onset 253/254 days) was examined 
twice using the same hierarchically ordered set 
of paradigms. The results revealed no correlation 
between both semantic paradigms (a positive 
ERP outcome in the word pair paradigm was 
not a prerequisite for the sentence understanding 
paradigm) and no correlation between the passive 
and active frequency oddball paradigms (a posi-
tive ERP outcome in the passive condition was 
not a prerequisite for the active condition). Thus, 
no informative conclusion about the present state 
of the patient could have been drawn if he were 
tested only with a single paradigm. However, a 
prerequisite of such an assessment is the patient’s 

ability to generally perceive sensory stimuli. 
Thus, further EEG analysis appears meaningless 
only if a frequent (standard) tone does not elicit 
even a primary cortical ERP complex P1-N1-P2. 
Otherwise, all passive paradigms and at least one 
active oddball or one more active paradigm (e.g., 
dichotic listening, Yvert et al., 1998; a semantic 
oddball, Kotchoubey & Lang, 2001; or negated 
sentences, Herbert & Kübler, 2011) should be 
conducted in each patient before a final conclusion 
about the level of consciousness can be drawn.

In addition, this example shows that several 
measurements within one patient should be per-
formed to increase the reliability of the assessment. 
Repeated measurements help to minimize error 
due to the well-known phenomenon of fluctuating 
arousal and attention in these patients. Further-

Figure 4. ERP responses of a VS patient. The black arrows point to significant components in which the 
two stimulus classes differ within an auditory paradigm – specifically, the P3, N400 and MMN.
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more, the development of appropriate paradigms 
for low- or non-responsive patients requires a dif-
ficult tradeoff between the reliability of the signal 
and the capacities of the patient. The longer the 
experiment is, the better the signal-to-noise ratio 
and, thus, the higher the data quality. However, the 
attention span of the patients is very limited and 
they might be overchallenged by long sessions. 
This balancing act is difficult and small estimation 
errors could yield misleading, but consequential 
results. Moreover, differences in ERP responses 
of patients need to be judged on the single subject 
level, whereas the ERP responses elicited by the 
paradigms described above are typically analyzed 
on the group level.

Analyses on a Single Subject 
Level: Concerns and Solutions

Traditionally, the presence and absence of ERP 
components are analyzed with respect to mea-
sures such as latency, polarity, topography and 
sensitivity to experimental manipulations (Picton 
et al., 2000). However, nearly all ERP research 
involves healthy subjects. These measures may 
be too weak to detect whether the experimental 
manipulation had an adequate effect on the mean 
amplitudes of P3 components (shown in Figure 
4), because ERPs in brain-injured patients may 
occur with prolonged latencies, and, depending on 
morphological changes in brain and skull structure, 
with altered topography and polarities (Duffy, 
Burchfiel, & Lombroso, 1979 Kotchoubey, 2005; 
Duncan et al., 2009). Thus, analysts might errone-
ously interpret any differences between amplitude 
curves (elicited by two different experimental 
conditions like standard and deviant) as indica-
tors of different brain processes. Conventional 
methods such as t-tests between two conditions at 
each sample and electrode positions may lead to 
unacceptable alpha inflation. Hence, we describe 
three correction procedures for the single-subject 
analysis of EEG data.

1.  False discovery rate (FDR) is a term for 
various procedures designed to control the 
expected number of false positive findings 
(Groppe et al., 2011). Compared to classi-
cal procedures, e.g. Bonferroni’s procedure, 
which control the family wise error and can 
be very conservative with large numbers 
of comparisons, FDR procedures provide 
adaptive error control, depending on the 
number of significant results. However, this 
approach may be problematic when trying 
to identify small differences in the absence 
of other, large differences, which might hap-
pen when analyzing data in a priori defined 
time-windows. Thus, effects declared as 
significant using FDR procedures might 
be difficult to replicate when using a priori 
defined time windows (Groppe et al., 2011).

2.  Another procedure was originally proposed 
by Guthrie & Buchwald (1991). This method 
takes into account that consecutive EEG 
samples – and any derived measures, such 
as t-values – are not independent, but show a 
high autocorrelation. By using an empirically 
derived estimation of this autocorrelation, it 
is possible to define a minimum length for 
the duration of series of values exceeding a 
predefined cutoff. In contrast to FDR, the 
effectiveness of Guthrie-Buchwald’s proce-
dure does not depend on the magnitude of 
observed effects, but on their duration. Thus, 
this method is most effective to detect long 
drawn out differences between two ERP 
curves, like the P3. Conversely, it is not suited 
for the detection of short differences, as the 
probability of short series might be judged to 
be too high, assuming a given autocorrela-
tion. Further, Blair & Karniski (1993) have 
highlighted the problem of, among others, 
accurately estimating the autocorrelation of 
EEG data.

3.  The Studentized Continuous Wavelet 
Transform, originally proposed by Bostanov 
& Kotchoubey (2006), analyzes EEG data 
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in the two-dimensional time-frequency do-
main. First, the continuous wavelet transform 
(Mallat, 2007) is calculated for each segment 
of EEG data. Second, a statistical map is 
created by calculating the t-values associ-
ated with the wavelet coefficients at each 
point in the time-frequency plane between 
two experimental conditions. Third, local 
extremes are detected in this statistical map. 
Finally, t-max randomization tests are used 
to determine which local extremes represent 
true vs. false differences in activation.

Each method has strengths and weaknesses. 
Thus, it is important to realize that effective di-
agnosis and analysis depends on both sensitivity 
and specificity. Any imbalance, such as high sen-
sitivity but low specificity (when using multiple 
unadjusted comparisons) or low sensitivity but 
high specificity (when using FDR (Bonferroni) 
corrections) is likely to impede progress of the 
assessment (Real et al., 2013).

ERP Analyses of Single Trials: 
Concerns and Solutions

There is a growing interest in decoding ERP com-
ponents at the level of single trials. This could be 
useful in many ways, such as identifying mental 
states or user’s intentions so BCIs can be applied 
for medical purposes. However, this issue remains 
very challenging due to the extreme trial-to-trial 
variability. One way to deal with the problem of 
single-trial detection of relevant components of 
the EEG signals is the use of detection algorithms, 
also called classifiers. Classifiers are mathematical 
tools designed to accurately recognize a relevant 
feature from single trial data to ultimately estimate 
if the brain can distinguish between two or more 
external stimuli (e.g. deviant versus standard). 
Once the accuracy of such a discrimination pro-
cess is computed, its statistical significance with 
respect to the chance level can be evaluated by 

means of statistical tests (e.g. chi-square test). The 
significance of the accuracy strictly depends on 
the number of classified trials and is measured by 
means of a p-value. This procedure can provide 
an index about the reliability of the discriminated 
responses, and thus it could support clinicians in 
DOC patients’ evaluation. Relevantly, such meth-
odology is independent from the used protocol.

To better illustrate the potential advantage 
of such a procedure for medical applications of 
BCIs, like the detection of mental processing in 
absence of behavioral signs, we present results of 
its application on EEG data sets obtained from two 
patients diagnosed as VS. They were administered 
a classical acoustic oddball P300-based paradigm 
(2nd level of the hierarchical approach), during 
which they were asked to mentally count the de-
viant tones (targets, T=60) against the standard 
(no-targets, NT=420). Significance threshold was 
set at 5%. In one patient, the classifications (step-
wise linear discriminant analysis - SWLDA) across 
109 trials were random (p>0.05) for both target 
(49.06%) and no-target (60.71%) classes. In the 
second VS patient, the accuracy was 65.38% and 
78.33% for target and no-target classes, respec-
tively. Both classes were significantly classified 
(ptarget=0.027, pno-target=0).

It is mandatory to stress that the absence of a 
positive result, as in the first case, could be ascribed 
to many factors independent from the diagnosis 
of VS, thus preventing any definitive conclusions 
with regards to the clinical diagnosis. False nega-
tive inducing factors may be: vigilance status at 
the time of the recording (patient was sleeping); 
cognitive function masked by the DOC that affects 
the auditory task accomplishment; high signal 
to noise ratio; or the classifier was not effective 
enough to extract relevant features. One recom-
mended solution is to conduct multiple recordings, 
as described above, at different times and/or to 
test different translation algorithms to identity 
the best appropriated for the relevant features. 
On the other hand, a possible occurrence of false 



196

Brain-Computer Interfaces for Assessment and Communication
 

positives (statement on the presence/intactness of 
patient’s cognitive processing ability) has to be 
considered. In this case, one source of errors might 
be the capture of brain response components not 
directly related to a voluntary shifting of attention 
between the two classes (target and no-target) that 
interfere with the algorithm classification output. 
A careful stimulation protocol design is the first 
step to prevent such an error source.

Overall, this section provides further support 
for the view that conventional DOC assessment 
procedures are inadequate, and that EEG-based 
measures can provide an effective, standard and 
easy methodology to detect residual cognitive 
activity in DOC patients. However, progress 
is hampered by procedural errors, which we 
discussed along with some solutions. The next 
section introduces the mandatory step for DOC 
patients provided consciousness was detected, i.e. 
a means of communication.

BCI: The Challenge and 
a Possible Solution

There are many challenges in developing a system 
that can detect consciousness, particularly with 
individual patients and single trials. However, if 
a non-responsive patient is consciously aware, 
then a new challenge arises: how can we establish 
communication in such a patient? A single-switch 
BCI (ssBCI) may be able to detect one specific 
brain pattern of a patient and use it to control dif-
ferent kinds of applications. Since each patient will 
react differently, the DECODER project explores 
several brain signals.

When designing a BCI for non-responsive 
patients, the specific cognitive characteristics of 
these patients have to be considered. Therefore, 
the BCI needs to be very simple and robust, mean-
ing it should function even if only a single brain 
pattern can be reliably detected in that patient. 
Since individual patients will react differently, 
mental imagery (Horki et al., 2012; Müller-Putz 
et al., 2013), P300 (Müller-Putz et al., 2012; 

Pokorny et al., 2013), and steady-state evoked 
potentials (Pokorny et al., 2011; Lesenfants et 
al., 2013) were explored. The P300 paradigm 
was implemented with auditory and vibrotactile 
stimulation. As examples, the methods for the 
auditory BCI and for the motor imagery based 
BCI will be described here.

Methods and Signal Processing

In the auditory P300 paradigm, two different 
tone streams composed of short beep tones with 
infrequently appearing deviant tones at random 
positions were used as stimuli (Müller-Putz et al., 
2012; Pokorny et al., 2013). The streams were 
presented simultaneously with asynchronous on-
sets. By intentionally shifting attention from one 
stream to the other, the P300 response elicited by 
the deviant tones in the attended stream should 
be modulated. This paradigm was evaluated in 
ten healthy subjects and applied to twelve MCS 
patients (four female, eight male), aged between 
14 and 66 years, at four different locations. EEG 
measurements were conducted in Graz (Albert 
Schweitzer Clinic), Würzburg (Intensive Care 
Hospital Schwaig), Rome (Fondazione Santa 
Lucia) and Liège (CHU University Hospital). This 
study was approved by the local Ethics Commit-
tees at all participating institutions and informed 
consent was obtained from the patients’ legal 
representatives. A SWLDA classifier together 
with 10x10 cross-validation was used to infer 
which tone stream was attended. Moreover, all 
data segments from one participant were averaged 
according to stimulus type and target stream, and 
significant differences (α = 5%, length L ≥ 30 
ms) between (i) standard and deviant tones and 
(ii) target and non-target deviants were estimated 
by bootstrapping using 1000 bootstrap samples.

In the mental imagery paradigm, we explored 
whether complex mental imagery and attempted 
feet movement could be reliably detected in 
DOC patients (Horki et al., 2012; Müller-Putz 
et al., 2013). Four male patients in MCS aged 



197

Brain-Computer Interfaces for Assessment and Communication
 

21 – 65 years participated in this study at Albert 
Schweitzer Clinic in Graz. Informed consent 
was obtained from the patients’ legal represen-
tatives. This study was approved by the Ethics 
Committee of the Medical University of Graz. 
The participants were instructed to perform the 
following tasks: sport - imagine performing one 
sport of your choice in the first person perspec-
tive; navigation - imagine navigating through 
your house, and looking around each room; feet 
- attempt (repeatedly) feet dorsiflexion. Fisher’s 
linear discriminant analysis (LDA) was used as 
a classifier based on logarithmic band power 
features calculated for multiple frequency bands 
(α: 8–13 Hz; βL: 13–19 Hz; βM: 19–25 Hz; βU: 
25–30 Hz). A nested blockwise cross-validation 
(10x10 inner fold; leave-one-block-out outer fold) 
was applied to estimate the classification accuracy 
of each task versus reference.

Results

In the P300 paradigm (Müller-Putz et al., 2012; 
Pokorny et al., 2013), results for healthy subjects 
were promising, and most classification results 
were clearly better than random. However, single 
trial classification results were above chance level 

in only one of the twelve MCS patients. In four of 
the patients, the presence of a P300 could at least 
be detected on a single trial basis when present-
ing only one of the tone streams. However, none 
of the results were sufficient for communication 
purposes. Nevertheless, signs of consciousness 
were detected in most patients, not on a single 
trial basis, but after averaging of corresponding 
data segments and computing significant differ-
ences (Figure 5A).

In the mental imagery paradigm (Horki et 
al., 2012; Müller-Putz et al., 2013), one patient 
showed patterns of activation over sensorimotor 
are as during at least one task involving either 
simple (i.e. feet dorsiflexion) or complex (i.e. 
sport) motor imagery (Figure 5B) in each of the 
two sessions. Two other patients showed patterns 
of activation over central sensorimotor area for 
complex motor imagery task in the first session. 
In one of the four patients, no significant results 
were found.

Evaluating Protocol Performance 
with a BCI-Based Approach

A BCI-based methodology was implemented to 
evaluate the used protocols. This methodology is 

Figure 5. Examples of brain patterns found in minimally conscious patients. The two panels show sig-
nificant differences that reflect mental awareness. (A) Significant P300 at channel Fz using the auditory 
P300 paradigm. (B) Significant ERD differences at channel C2 (orthogonal Laplacian derivation) in 
the alpha band using the mental imagery paradigm.
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standardized, as it is independent from the pro-
tocol itself, the extracted features, and the used 
classifier. It is based on the evaluation of clas-
sification performances stored into a confusion 
matrix (CM) (Bianchi et al., 2007), and also on 
the assessment of the statistical reliability of clas-
sification accuracy. Briefly, once the classification 
accuracy is computed, by considering the number 
of trials in each classification class (sport, navi-
gation, feet, target, non target, etc.), it is possible 
to assess how much such accuracies differ from 
what a random classifier would return (Billinger 
et al., 2013; Yuan et al., 2013). This information 
is complementary to the data obtained from the 
study of brain patterns, as it allows researchers 
to understand the significance and reliability of 
a detected brain response. Furthermore, it could 
help to identify the best task to setup the ssBCI 
based on the residual skills of each patient.

Discussion

In the auditory P300 paradigm, single-trial classi-
fication results were not sufficient for communica-
tion purposes (Müller-Putz et al., 2012; Pokorny 
et al., 2013). Nevertheless, since significant 
deflections were found on an average level, this 
paradigm might still be useful to support clinical 
assessment of patients, and to provide them with a 
means of communication. In principle, since time 
is not a crucial factor for unresponsive patients, 
communication could be established by simply 
averaging data over many trials and detecting 
significant differences due to attention. To improve 
the paradigm, different stimuli (e.g., words instead 
of tones) that may be easier to distinguish or elicit 
a stronger P300 response might be beneficial in 
the future (Ricci et al., 2013).

Using mental imagery, on the other hand, 
seems to be a more promising approach for some 
patients to communicate their intent (Horki et al., 
2012; Müller-Putz et al., 2013). Classification 

accuracies above chance were estimated for the 
feet and/or the sport mental imagery, but not for 
the navigation task. This is in line with previous 
findings indicating that, among other tasks, motor 
imagery rather than spatial navigation most fre-
quently results in better classification performance 
(Friedrich et al., 2012).

Conclusion and Future Directions

Another method that may work well for detecting 
command following and testing communication 
in non-responsive patients is based on modulation 
of steady-state visually evoked potentials (SS-
VEPs) using covert visual attention (Lesenfants 
et al., 2013). In future applications, one alterna-
tive approach to realize an ssBCI might involve 
attention-modulated steady-state somatosensory 
evoked potentials (SSSEPs). The feasibility of such 
an ssBCI was already shown in healthy subjects 
(Pokorny et al., 2011). The usage of a tactile P300 
BCI system with patients is explained in more 
detail in the next section. To conclude, initial 
results presented here, as well as the results of 
other similar studies (Goldfine et al., 2011; Cruse 
et al., 2011, indicate that some DOC patients could 
communicate their intent using EEG.

COMMERCIAL SYSTEMS: 
MINDBEAGLE

Patients normally stay in a rehabilitation institu-
tion for several months before they are released to 
professional home-care, a home for handicapped 
people, or to a private home - often without 
professional or technical support. Hospitals typi-
cally have medical assessment and rehabilitation 
facilities in the same unit. In these institutions, it 
is advantageous to have a system that can assess 
the cognitive functions of the patients in frequent 
intervals to show trends and can allow patients 
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to communicate if cognitive functions are still 
present. Notwithstanding the described caveats, 
emerging EEG-based methods can facilitate both 
diagnosis and communication. The EEG is inex-
pensive, portable, widely available and objective, 
and has been used in hospitals for many years. 
However, practical EEG systems for non-expert 
users in home settings are not common.

As noted in the section titled “Requirements 
for an EEG-based diagnostic battery for patients 
with DOC”, interviews with experts indicated that 
the most important properties of an assessment 
and communication system are:

• Dependence on EEG only (due to prob-
lems with fMRI and other means);

• Fast and easy mounting of electrodes;
• Automatic data analysis and result 

presentation;
• Ease of use by medical / technical 

assistants;
• Support for a test battery to assess cogni-

tive function;
• The capability to provide communication 

for the patient;
• Cost; and
• Prognostic value of results.

The key purpose of such an EEG system is 
to assess cognitive functions and establish an 
interface for communication. This was realized 
through (i) auditory evoked potentials (AEP), 
(ii) vibrotactile (VT) evoked potentials and (iii) 
motor imagery experimental protocols. Both the 
auditory and vibrotactile experiments are designed 
to elicit a P300 response similar to a P300 spell-
ing device. A P300 spelling device is a BCI that 
presents different characters on the computer 
screen, which each flash individually or in certain 
patterns. The user is asked to concentrate on just 
one of these characters. Whenever this character 
flashes, a P300 component appears in the EEG 
data. After several repetitions, the signal-to-noise 
ratio increases to a level that the BCI can detect 

and thereby select the corresponding character. 
This allows paralyzed patients to communicate 
(see Kaufmann et al., 2013c for the most recent 
result in patients with severe motor paralysis).

However, P300 BCIs based on visual stimuli do 
not work with patients who have lost their vision. 
Auditory paradigms can also be implemented us-
ing a frequent stimulus with a certain frequency 
and an infrequent stimulus with another frequency 
(see above). The user is asked to count how many 
times the infrequent stimulus occurs. Like with 
the visual P300 speller, the infrequent stimuli also 
produce a P300 response in the EEG. The same 
principle can be used for vibrotactile stimulation 
if e.g. the right hand is frequently stimulated and 
the left hand is infrequently stimulated. The EEG 
will also exhibit a P300 if the user is paying atten-
tion to the infrequent stimuli. This auditory and 
vibrotactile setup can assess whether the patient is 
able to follow instructions and in an experimental 
procedure (Kaufmann et al., 2013b). To answer 
yes and no questions, it is necessary to extend 
the vibrotactile setup to 3 stimulators. One of the 
stimulators applies the frequent stimuli, and 2 
stimulators apply the infrequent stimuli. The user 
can concentrate on one of the infrequent stimu-
lators to say (in this case) yes or no. Typically, 
an evoked potential is calculated by averaging 
the frequent and infrequent stimuli. A statistical 
analysis helps to visualize statistically significant 
differences, which is especially important for 
patient data collected in field settings, which is 
frequently noisy.

As noted above, motor imagery may also be 
used to control a BCI. In this case, the patient has 
to imagine a right or left hand movement for two-
four seconds. This will result in an event-related 
desynchronization (ERD) and event-related syn-
chronization (ERS) over the sensorimotor regions. 
Synchronization with the EEG data is necessary to 
avoid delays and jitters. The BCI system analyzes 
the acquired EEG data in real-time by implement-
ing source derivation, pre-processing, parameter 
estimation and classification algorithms. Finally, 
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the BCI system decides whether the user imagined 
left or right hand movement, which can be used as 
a control signal to answer yes and no questions. 
If several repetitions are performed, the BCI sys-
tem can calculate a mean accuracy that shows if 
the user is able to follow instructions. With two 
choices, such as yes or no, 50% accuracy would 
correspond to random classification.

The mindBEAGLE system (see Figure 6, left 
side) contains all these features and consists of 
an EEG amplifier with 16 channels that uses a 24 
Bit analog to digital converter for high precision. 
The amplifier samples the EEG data at 256 Hz 
and sends the data via USB to the laptop computer 
system. Active EEG electrodes are used to get a 
robust EEG recording and avoid skin abrasion. 
They eliminate most of the artifacts from cable 
movements and power line interference. Therefore, 
high quality EEG recording can be performed 

even in an unshielded room. Sixteen active elec-
trodes can be mounted with conductive electrode 
gel, normally within about 2 minutes, including 
ground and reference electrodes. The reference 
is mounted on the left ear lobe and the ground 
electrode is located on the forehead.

The laptop controls the data acquisition, ex-
perimental paradigm, signal processing and result 
presentation. To provide auditory stimulation, 
the laptop also has an internal audio interface 
which can stimulate the left and right ear via in-
ear headphones and sends a trigger signal to the 
signal processing module for synchronization. 
For the vibrotactile stimulation, the system uses 
stimulators like those shown in Figure 6, left side. 
In this case, one stimulator is mounted on each 
wrist, and switched on to stimulate the hand for 
several hundred milliseconds. Both are connected 
via USB to the computer and are controlled in 

Figure 6. Left, top: mindBEAGLE system with EEG cap, active EEG electrodes, g.USBamp amplifier, 
vibrotactile stimulator, in-ear headphones and a laptop computer running the software. Left, bottom: 
vibrotactile stimulators on the left and right hand. Right, top: BCI accuracy trend over several days. 
Right, bottom: EP of electrode position Cz with statistical test between target and non-target auditory 
stimuli. The EP shows a significant P300 response. The bottom curve shows BCI accuracy over a number 
of target stimuli.
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real-time through the experimental paradigm. 
For the motor imagery experiment, auditory 
instructions like “move the left hand” or “move 
the right hand” are given via the internal sound 
board. Perfect synchronization between the EEG 
data and auditory and tactile stimuli is critical to 
avoid delays or jitters.

The right side of Figure 6 shows the results 
for the auditory stimulation paradigm, using the 
evoked potential for electrode Cz on the vertex as 
an example. The Event-Related Potential (ERP) 
consists of the non-target averages (blue line) and 
of the target average (green line) from 100 ms be-
fore the stimulus onset until 700 ms post-stimulus. 
The green area around 250-350ms indicates the 
statistically significant P300 response for this 
electrode with p<0.02. The accuracy plot reaches 
100% accuracy after 5 target stimuli, which shows 
that the BCI system can perfectly discriminate 
the P300 response provided a sufficient number 
of trials. This resulting accuracy is also logged 
into a trend analysis to assess the patient’s P300 
response over time.

The results for the vibrotactile experiment with 
2 stimulators are similar to the results from the 
auditory experiment. The ERP waveform and BCI 
accuracy can be used to interpret the results. To 
answer questions in the vibrotactile paradigm, the 
subject is equipped with stimulators on each hand 
and the neck. Each of the stimulators is switched 
on for 100 ms with a short break in between. The 

subject is asked to focus on one of the stimulators 
and to count how many times it vibrates. Then, a 
caregiver asks a question and starts the paradigm. 
Like intendiX (www.intendix.com) or other visual 
P300 spellers, this elicits a P300 for the target 
stimulator, as shown in Figure 7, which allows the 
system to make a “yes” decision. Another kind of 
yes/no control approach was implemented with 
the motor imagery based BCI system, in which 
left or right movement imagery corresponded to 
“yes” or “no”.

In summary, mindBEAGLE can assess audi-
tory and vibrotactile P300 and motor imagery 
responses, which can help identify whether the 
patient is able to follow instructions. If a P300 
response is detected with the statistical ERP 
analysis or with the BCI algorithms, then it is 
very likely that the patient can understand instruc-
tions and concentrate on the task. The same is the 
case for the motor imagery paradigm. The trend 
analysis helps to identify fluctuations and helps 
to optimize treatment. Since many patients have 
impaired vision, the motor imagery, auditory and 
vibrotactile paradigms are better suited to their 
abilities, and can also produce reliable results. 
However, these results must be confirmed with 
more DOC patients.

After the initial assessment with a positive 
P300 response, the patient can also be trained 
to use the system for communication. Using the 
auditory experiment and 2 stimulators, the patient 

Figure 7. Vibrotactile P300 communication via stimulators placed on the left hand, right hand and neck 
(left, middle, and right panels, respectively). The middle panel shows a clear P300 when the subject 
attends to the right hand stimulator.

http://www.intendix.com
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can simply generate a click. With 3 stimulators 
and the motor imagery experiment, the patient can 
even answer yes and no questions, and thus the 
mindBEAGLE provides an ssBCI as described 
above that can be used with DOC patients.

Hence, mindBEAGLE is a new, practical EEG 
based system that can work even in noisy, real-
world environments. This section and the previous 
section about single-switch BCIs showed that new, 
EEG-based solutions can address some of the prob-
lems inherent in conventional EEG-based tools for 
diagnosis and treatment. Next, we continue our 
discussion of challenges and potential solutions 
by considering a different tool to measure brain 
function in DOC patients.

FUNCTIONAL NEAR-INFRARED 
SPECTROSCOPY (fNIRS): 
ANOTHER EMERGING SOLUTION 
FOR COMMUNICATION 
IN DOC PATIENTS?

Background

Compared to the EEG or fMRI, fNIRS is a 
relatively new and rarely applied non-invasive 
functional brain imaging method. It measures a 
hemodynamic brain signal, similar to fMRI (Irani 
et al., 2007; Villringer & Chance, 1997), and also 
shows similar vascular sensitivity (Huppert et al., 
2006). Like fMRI, fNIRS relies on the neurovas-
cular coupling and, thus, only indirectly measures 
local brain activation through hemodynamic 
changes that accompany changes in neuronal 
activity. In terms of signal acquisition, however, 
fMRI and fNIRS methods differ considerably.

Functional NIRS is based on the penetrability of 
biological tissue by near-infrared light (composed 
of wavelength of 650-950 nm). Emitter optodes 
(sources) that are placed on the head send out 
light that passes through the skull and the brain. 
On its way through the brain, the chromophores 

of oxygenated (oxy-Hb) and deoxygenated he-
moglobin (deoxy-Hb) within the blood vessels 
absorb the light according to their particular opti-
cal properties (Fallgatter et al., 2004; Irani et al., 
2007).The remaining (reflected) light is picked 
up by detector optodes (detectors) placed on the 
head surface within a few centimeters from the 
sources. As oxy- and deoxy-Hb differ with respect 
to their absorption spectra (i.e., they absorb light 
of particular wavelengths), one can then calcu-
late the relative concentrations for both of them 
separately from the amount of light attenuation 
(the ratio of emitted to reflected light) by using a 
modified Beer-Lambert law (Cope & Delpy, 1988; 
Cope et al., 1988). Based on these concentrations, 
one can infer the functional state of neuronal tis-
sue (‘active’ or ‘non-active’). However, because 
of many uncontrollable influences, the absolute 
concentrations of the chromophores cannot be 
measured. Therefore, the exact brain activation 
level cannot be determined (Fallgatter et al., 2004). 
Nevertheless, relative changes in the signal time 
course are sufficient for localizing brain functions 
or for BCI applications, similar to fMRI.

Compared to fMRI, the main advantages of 
fNIRS are portability and reduced sensitivity 
to head movement artifacts. This makes fNIRS 
technology usable at the patients’ bedside (for di-
agnostic purposes) or even beyond clinical settings 
in daily-life situations, e.g. for motor-independent 
communication. Moreover, fNIRS is relatively 
affordable, less technically demanding, and easier 
to operate. This might allow larger patient popu-
lations to benefit from hemodynamically based 
BCI applications. Furthermore, it does not require 
exposing patients to a strong magnetic field, and 
hence can be used close to paramagnetic medical 
equipment. Another advantage of fNIRS is that it 
is nearly silent. Thus, fNIRS can be regarded not 
only as a completely safe and harmless but also 
relatively comfortable method. While fNIRS has 
these benefits over fMRI, it only allows reliably 
measuring hemodynamic responses in cortical 
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tissue that is close to the head surface (up to ap-
proximately 3cm in depth). Thus, brain activation 
in, e.g., subcortical structures cannot be measured 
that would be accessible with fMRI. Moreover, 
the spatial resolution of fNIRS (in the range of a 
few cubic centimeters) is considerably lower than 
the resolution obtained with fMRI (in the range 
of a few cubic millimeters).

While fNIRS has been applied in fundamental 
neuroscience since the early 1990s, it has only 
recently been recognized as a potential BCI mea-
surement technology (Coyle et al., 2004; 2007; 
Naito et al., 2007; Sitaram, et al., 2007; Luu& 
Chau, 2009; Power et al., 2012). The following 
fNIRS study, performed in the context of the DE-
CODER project, further explored the suitability 
of fNIRS for brain-computer interfacing.

Methods

Participants. Twelve healthy participants (age: 
29.8 years ± 9.6; five male, one left-handed) were 
included in the study that was approved by the 
local ethics committee of the Faculty of Psychol-
ogy and Neuroscience at Maastricht University. 
All participants gave written informed consent.

General procedure, preparation and instruc-
tion. Seven mental tasks (mental calculation, 
mental drawing, mental rotation, mental sing-
ing, mental talking, spatial navigation and ten-
nis imagery) were explained to the participants 
using standardized instructions. After ensuring 
that the participants understood each mental 
task, they were asked to choose the two mental 
tasks from the set that they thought are most easy 
and comfortable to perform. Participants had to 
undergo two identical functional runs. In each of 
these runs, they had to perform the two selected 
mental tasks nine times – three times for 5s, 10s, 
and 15s each. The two conditions alternated with 
resting phases of 20s in between. Participants were 
seated comfortably in a quiet room in front of a 
computer screen. They were instructed to engage 
in the mental task that was displayed on the screen 

as immediately and continuously as possible, 
and to stop as soon as the resting instruction was 
indicated. During the resting phase, participants 
should not engage in a specific thought or task. 
Only the first three letters of the second part of the 
mental task’s name were displayed on the screen 
(e.g., “dra” instead of “mental drawing”) to avoid 
a visual stimulation that could automatically evoke 
task-specific brain activation (Nachev & Husain, 
2007). For the same reason, the instructions were 
presented for only 2s followed by a fixation cross. 
Visual stimuli were presented using E-Prime 2.0 
software (Schneider et al., 2002).

Data acquisition. fNIRS data were recorded 
with a NIRScout 816 upgraded to 16 sources and 
24 detectors (NIRx Medizintechnik GmbH, Berlin, 
Germany). The data were recorded for 9 min 20 s 
for both 760nm and 850nm with a sampling rate 
of about 3.5 Hz. Because of the limited number 
of sources and detectors, a montage with high 
resolution was only feasible for a confined area 
of the scalp. The montage shown in Figure 8A 
was used in order to get high-resolution data for 
the left hemisphere.

Data analysis. fNIRS data were analyzed using 
Satori (v0.8, Brain Innovation B.V., Maastricht, 
The Netherlands). T-values for each channel for the 
oxy- and deoxy-Hb time courses were computed 
and used as features for a linear support vector 
machine (SVM). The first run’s data were used 
to ‘train’ and the second run’s data were used to 
‘test’ the SVM classifier. The classification was 
repeated with the second run’s data to ‘train’ and 
the first run’s data to ‘test’ the classifier. For each 
participant, both of the obtained 2-task classifi-
cation accuracies were averaged. Moreover, the 
mean 2-class classification accuracies obtained 
separately for the two different ‘training’/’testing’ 
data sets were calculated.

Results

Each of the suggested mental tasks was chosen 
by at least one participant. Spatial navigation (n 
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= 7) and mental drawing (n = 5) were generally 
preferred, whereas tennis imagery was selected 
by only one participant (Figure 8C).

Averaged across participants, the achieved 
2-task classification accuracy was 63.4% (chance 

level being 50% for differentiating between two 
mental tasks), which varied considerably between 
38.9% (P01) and 94.4% (P03) (Figure 8C). The 
mean 2-task classification accuracies obtained 

Figure 8. Optode placement and classification results of the fNIRS experiment. Panel A shows a 2D 
representation of the optodes’ montage. 40 optode locations were chosen to achieve a high-resolution 
coverage of the left hemisphere. White dots represent sources (16) and black dots represent detectors 
(24). Optrode positions are shown according to the extended 10-20 system of EEG electrode place-
ment (Oostenveld & Praamstra, 2001). Panel B displays the mean classification accuracies obtained 
separately for the two different ‘training’/’testing’ data sets and their mean classification accuracy. Er-
ror bars indicate variance across participants (± standard error of mean – s.e.m.). Panel C shows the 
mental tasks selected and the achieved 2-task classification results for each participant. Moreover, the 
2-task classification accuracy across all participants is displayed. Abbreviations/remarks: MC, mental 
calculation; MD, mental drawing; MR, mental rotation; MS, mental singing; MT, mental talking; SN, 
spatial navigation; TI, tennis imagery; error bars indicate variance across participants (± s.e.m.).
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separately for the two different ‘training’/’testing’ 
data sets only minimally differed (Figure 8B).

Discussion

In two thirds of the cases, the achieved individual 
2-task classification accuracies were above 60%. 
However, it is critical to note that the obtained 
classification results varied considerably across 
participants. The high classification accuracy 
obtained for participant P03 indicates that, in 
principle, high classification performances can 
be achieved. Note that this participant was highly 
trained with regards to the mental tasks employed, 
whereas most other participants performed the 
mental tasks for the first time. This indicates 
that classification accuracies might considerably 
increase with intensive pre-training of the mental 
tasks, which might not be feasible when using 
fNIRS for assessing the level of consciousness, 
but should be possible in the context of motor-
independent communication with BCI.

Future Directions

The aforementioned main limitations of fNIRS 
(relatively low spatial resolution, restricted depth 
pervasion) require a careful exploration of suited 
mental tasks that evoke differential brain activa-
tion patterns within superficial cortex regions 
(i.e., in crowns of gyri). In this context, it might 
prove beneficial to exploit the high resolution of 
fMRI and to transfer gained information on the 
localization of brain function to the fNIRS tech-
nology. Thus, one idea would be to perform fMRI 
and fNIRS experiments in the same individuals 
– preferably simultaneously. In this context, the 
individual information gained from fMRI experi-
ments could be further used to optimize (‘guide’) 
optode placement and therewith increase the 

sensitivity of fNIRS. Additionally, more training 
data should be obtained, which will most likely 
increase classification accuracies. Moreover, 
fNIRS-based communication and control tools 
should be designed in a patient-tailored manner 
(e.g., individually selecting mental tasks) to op-
timize the separability of fNIRS brain activation 
patterns for each individual case and to make the 
device more comfortable. Finally, researchers 
should make a strong effort to explain the consid-
erable inter-individual variability. The suggested 
combined fMRI and fNIRS measurements in the 
same individual may help in the future to better 
understand the observed inter-subject variability.

Taking into account the current state-of-the-art 
and the resulting opportunities for further develop-
ment, we consider fNIRS-based brain-computer 
interfacing a promising technology with a clear 
potential for motor-independent communication.

CONCLUSION

Conventional methods for assessing the level of 
consciousness in patients with DOC and providing 
communication are insufficient. Both interviews 
with clinicians and numerous imaging studies have 
shown that misdiagnoses are common, even in 
hospital settings with well-established procedures. 
Furthermore, tools that can allow for communica-
tion are promising but require further development. 
Several advancements within the DECODER 
project and other efforts have further elucidated 
conventional problems and possible solutions, 
and have established foundations for improved 
portable systems that may rely on EEG and/or 
fNIRS. Different possible future directions were 
discussed within respective sections, supporting 
the overall conclusion that new, BCI-based tech-
nologies are advancing rapidly and are likely to 
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provide improved diagnosis and communication 
for patients with disorders of consciousness or in 
the locked-in state.

The issue of BCIs used in DOC patients may 
be regarded as key for further clinical practice, but 
there is relatively little work analyzing functional 
neuroimaging data in DOC patients. Our under-
standing of higher cognitive processes and related 
brain activity is too limited to develop thorough 
and precise methods to understand DOC patient 
data, and research such as in the DECODER 
project might help to change this situation. By 
developing BCI technology to assess, under-
stand, and communicate with DOC patients, we 
might not only change the lives of these patients 
and their families and caregivers, but also solve 
some scientific, clinical and ethical problems. 
Thus, results and conclusions of the DECODER 
project provide a basis for improved guidelines 
and new clinical and research procedures. In the 
near future, BCI based systems for assessment 
and communication will become available that 
will allow us to use BCI technology with more 
patients and perform further scientific studies.
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KEY TERMS AND DEFINITIONS

Auditory Evoked Potential (AEP): A cat-
egory of EEG activity elicited by auditory stimuli, 
such as tones or words. Other sensory informa-
tion can produce other evoked potentials, such as 
visual evoked potentials (VEPs) or somatosensory 
evoked potentials (SEPs).

Battery for the Assessment of the Level of 
Consciousness (BAC): A series of tests that may 
be used to evaluate the patients’ consciousness, 
which may result in a designation as minimally 
conscious or vegetative.

BCI (Brain-Computer Interface) or BMI 
(Brain-Machine Interface): A device that di-
rectly records activity from the central nervous 
system and translates it into messages or com-
mands.

FES (Functional Electrical Stimulation): 
A device that artificially stimulates muscles, 
such as muscles responsible for grasping or hand 
movements. FES systems controlled by BCIs can 
restore some movement to people with spinal cord 
injury or other conditions.

Invasive: A category of BCI in which elec-
trodes are surgically implanted on or in the brain.

Neuroscience: The study of the human ner-
vous system.

Non-invasive: A category of BCI that does 
not rely on invasive sensors. Most non-invasive 
BCIs use electrodes placed in an electrode cap, 
which is worn on the head.

Robotics: A category of engineering focused 
on developing, building, testing, and improving 
robots.

Single Switch BCI (ssBCI): A type of BCI that 
provides control equivalent to one single switch, 
such as an ON-OFF switch for a light.

Vegetative State (VS): A condition in which 
users are unable to produce goal-oriented re-
sponses to stimuli, among other deficits.
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